Diastereoselective Nickel-Catalyzed Reductive Aldol Cyclizations Using Diethylzinc as the Stoichiometric Reductant: Scope and Mechanistic Insight

Pekka M. Joensuu, Gordon J. Murray, Euan A. F. Fordyce, Thomas Luebbers and Hon Wai Lam

J. Am. Chem. Soc. ASAP

Couplings of Alkenes with Alkynes

J.Am.Chem.Soc. 1997, 119(21), 4911.

Nickel-Catalyzed Coupling Reactions of Carbonyl Compounds with Alkynes

HO HO R Ni(COD)₂, PBu₃ O R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ R
$$L_nNi$$
 R $L = PBu_3$ L_nNi $L = THF$ reductive elimination

J. Am. Chem. Soc. 1997, 119, 9065.

Nickel-Catalyzed Reductive Coupling of Aldehydes and Alkynes (Et₃SiH as a Reductant)

entry	^{1}R	^{2}R	^{3}R	yield
1	Ph	Me	Ph	84%
2	<i>n</i> -Hex	Me	Ph	82%
3	Ph	Н	<i>n</i> -Hex	71%
4	Ph	Н	Ph	72%
5	s-Bu	Me	Ph	81%

$${\displaystyle \mathop{OSiEt_{3}}_{\tilde{z}}} \\ {\displaystyle {}^{1}R} {\displaystyle \mathop{\bigcap}_{\tilde{z}}} {}^{3}R$$

J. Am. Chem. Soc. 2004, 126, 3698.

J. Am. Chem. Soc. 2007, 129, 9568.

ABSTRACT

$$R^{1} \xrightarrow{R^{2}} R^{3} \xrightarrow{\text{Co (cat.)}} R^{1} \xrightarrow{\text{THF, hexane}} \begin{bmatrix} R^{1} & OZnEt \\ R^{1} & OZnEt \\ R^{2} & O \end{bmatrix} \xrightarrow{R^{1}} R^{3} \xrightarrow{R^{2}} R^{3} R^{3} \xrightarrow{R^{2}} R^{3} R^{3} \xrightarrow{R^{2}} R^{3} R^{3} R^{3} R^{3} R^$$

Cobalt catalysis enables a new method for the generation of zinc enolates using diethylzinc to reduce α,β -unsaturated amides. This method has been applied to a high-yielding diastereoselective reductive aldol cyclization.

Method A: Co(acac) ₂ · 2H ₂ O (5 mol %)
Method B: CoCl ₂ (5 mol %), Cy ₂ PPh (5.5 mol %)

entry	substrate		method	product		dr ^b	yield (%) ^c
1	Q Q	R = Me 1a	Α	→ ↓ PMP	2a	12:1	89
2		R = Me 1a	_d	Ph N N	2a	12:1	79
3	Ph N R	R = Et 1b	Α	RIIII HO	2b	9:1	88
4	0 0	R = H 1c	Α	0	2c	9:1	88
5		R = <i>i</i> -Pr 1d	Α	$R \longrightarrow N \longrightarrow Bn$	2d	>19:1	>99
6 7	R Me	R = Ph 1e	Α	Merm	2e	> 1 9:1	97
7	В́п	R = 2-furyl 1f	Α	НО	2f	>1 9:1	>99
	<u>0</u> 0						
8		R = Me 1g	Α	R N Bn	2g	>19:1	94
9	R N Ph	R = <i>i</i> -Bu 1h	Α	Phim	2h	>19:1	94
				Hơ O			
10	∬ çO₂Et	R = H 1i	В	→ ↓ PMP	2i	9:1 ^e	56
11	$R \nearrow N$	R = Me 1j	В	RHONN	2j	>19:1 ^e	80
12	PMP	R = Ph 1k	В	CO ₂ Et	2k	>19:1 ^e	88
13	0	R = H 1I	۸	<u> </u>	21	9:1	4 7
	, Å ∧ .Me		A	R PMP			
14	R N N	R = Ph 1m	A	× \ / /	2m	8:1	56
15	PMP Ö	R = OMP 1n	В	Me''''	2n	14:1	74

Org. Lett. 2006, 8(17), 3729.

Plausible Mechanism

$$R^{1}$$
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3

 R^1

R³"

EtZnÕ 11

Or binding Et₂Zn along with Lewis basic interaction with cobalt hydride via 3c, 2e bridge

$$E_{1}^{t}$$
 E_{1}^{t}
 E_{2}^{t}
 E_{1}^{t}
 E_{1}^{t}
 E_{2}^{t}
 E_{3}^{t}
 E_{4}^{t}
 E_{2}^{t}
 E_{3}^{t}
 E_{4}^{t}
 E_{2}^{t}
 E_{3}^{t}
 E_{4}^{t}
 E_{4

Org. Lett. 2006, 8(17), 3729.

Title Paper: Nickel-Catalyzed Reductive Aldol Cyclization

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

entry	substrate		product		dr ^b	yield (%)
1		R = Me 3a		4a	>19:1	97
2	0 0	$R = i-Pr \ 3b$	O II	4b	>19:1	98
3		R = CH ₂ CH ₂ Ph 3c	, R N Bu	4c	>19:1	95
4	R N Me I Bn	R = Ph 3d	Merry	4d	>19:1	97
5	ы	R = 2-furyl 3e	но	4e	>19:1	>99
6	N Me	3f (N PMP HO	4f	>19:1	75
7	Ph N Et	3g	Ph PMP HO	4g	9:1	82
8	Me N Ph	3h	Et OMP	4h	>19:1	62
9	0 0	R = Me 3i	o II	4i	9:1	84
10	$R \longrightarrow N \longrightarrow Ph$	R = <i>i</i> -Bu 3 j	R N Bn	4j	12:1	84
11	R N Ph	R = 2-furyl 3k	Phim	4k	>19:1	79
12 13	R CO ₂ Et	R = Me 3I R = Ph 3m	RHO PMP	4l 4m	>19:1° >19:1°	

Title Paper: Scope of the Reaction

Me
$$O$$

N

Me

Me

Ni(acac)₂ (5 mol %)

THF, hexane

0 °C to rt

HO

13

>19:1 dr

- simple acrylamides are less competent substrates but using Co(acac)₂ x 2H₂O gives 6 in 88% yield
- substitution at the α -position enforces reductive cyclization vs. alkylaive aldol cyclization
- the cyclizations of **8**, **10** and **12** using Co(acac)₂ were completely unsuccessful
- tertiary zinc alkoxides produced in reductive cyclization undergo lactonization with the adjacent ester (unsuccessful with Co-catalyst)

EtO₂C
$$R^2$$
 R^2 $R^$

Title Paper: Nickel-Catalyzed Reductive Aldol Cyclization Furnishing β -Hydroxylactones

$$R^{1} \xrightarrow{O} Q \xrightarrow{O} R^{2} \xrightarrow{Et_{2}Zn (2 \text{ equiv}) \\ Ni(acac)_{2} (5 \text{ mol } \%)} R^{1} \xrightarrow{R^{2} \text{III.}} Q$$

$$Q = 20j \qquad Q = 20j \qquad Q = 21j$$

entry	substrate		product		dr	yield (%)°
1		R = /-Bu 20a	· ·	21a	>19:1	77
2		R = CH ₂ CH ₂ Ph 20b	$_{R}$	21b	>19:1	85
3	R O Me	R = 4-MeOPh 20c	Merm	21c	>19:1	76
4		R = 2-furyl 20d	но	21d	>19:1	81
5		R = <i>i</i> -Bu 20 e	o II	21e	5.5:1	84 ^d
6		R = CH ₂ CH ₂ Ph 20f	1 1	21f	≥10:1	76°
7 R' V	R' O' Ph	R = 2-furyl 20g	HO	21g	n.d ^f	75 ^f
8	O ∐ ÇO₂Et	R = Me 20h		21h	>19:1 ⁹	88
9	ROO	R = i-Pr 20i	R HO TO	2 1i	>19:1 ⁹	74
10		R = Ph 20 j	CO ₂ Et	21j	>19:1 ⁹	73

Title Paper: Mechanistic Considerations

Mechanism B

Part of the property of the prope

- The nickel-catalyzed reductive cyclization of
 53 gave a 1:1.3 inseparable mixtures of
 56a and 56b (diastereomeric products)
- Mecanisms **A** and **B** are appreciably more complex
- The alkene of the α , β -unsaturated carbonyl can undergo E/Z equilibration and the diastereoselectivity could result from mechanism **A**

Title Paper: Stereochemical Outcome

Ph.
$$Bn$$
 Et
 $Ni(acac)_2$
 Et
 Et
 $Ni(acac)_2$
 Et
 Et
 $Ni(acac)_2$
 Et
 Et

- Subjecting the *Z*-**60** to the standard reaction conditions (with 0.5 equiv of Et₂Zn) gives the lactam **61** along with the uncycled material (*which had undergone complete E/Z isomerisation*)
- Mechanism A cannot be excluded

Conclusions

- Ni(acac)₂ in the presence of diethylzinc is a highly effective catalyst for the reductive aldol cyclization of substrates containing α , β -unsaturated carbonyl functions thetered to the ketone
- Tether can be either an amide or an ester (opposite to Co(acac)₂ which is not efficient with esters)
- The role of diethylzinc is to deliver a hydride to the β -position of the cyclization precursor
- The reaction is tolerant to substituents at the β -position of the α , β -unsaturated carbonyl component as well as to different nitrogen protected groups
- Two possible mechanisms were suggested and several mechanistic probes revealed the complex nature of these reactions