Diastereoselective Nickel-Catalyzed Reductive Aldol Cyclizations Using Diethylzinc as the Stoichiometric Reductant: Scope and Mechanistic Insight Pekka M. Joensuu, Gordon J. Murray, Euan A. F. Fordyce, Thomas Luebbers and Hon Wai Lam J. Am. Chem. Soc. ASAP #### **Couplings of Alkenes with Alkynes** J.Am.Chem.Soc. 1997, 119(21), 4911. ## Nickel-Catalyzed Coupling Reactions of Carbonyl Compounds with Alkynes HO HO R Ni(COD)₂, PBu₃ O R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ HO R Ni(COD)₂ R $$L_nNi$$ R $L = PBu_3$ L_nNi $L = THF$ reductive elimination J. Am. Chem. Soc. 1997, 119, 9065. # Nickel-Catalyzed Reductive Coupling of Aldehydes and Alkynes (Et₃SiH as a Reductant) | entry | ^{1}R | ^{2}R | ^{3}R | yield | |-------|---------------|---------|---------------|-------| | 1 | Ph | Me | Ph | 84% | | 2 | <i>n</i> -Hex | Me | Ph | 82% | | 3 | Ph | Н | <i>n</i> -Hex | 71% | | 4 | Ph | Н | Ph | 72% | | 5 | s-Bu | Me | Ph | 81% | $${\displaystyle \mathop{OSiEt_{3}}_{\tilde{z}}} \\ {\displaystyle {}^{1}R} {\displaystyle \mathop{\bigcap}_{\tilde{z}}} {}^{3}R$$ J. Am. Chem. Soc. 2004, 126, 3698. J. Am. Chem. Soc. 2007, 129, 9568. #### **ABSTRACT** $$R^{1} \xrightarrow{R^{2}} R^{3} \xrightarrow{\text{Co (cat.)}} R^{1} \xrightarrow{\text{THF, hexane}} \begin{bmatrix} R^{1} & OZnEt \\ R^{1} & OZnEt \\ R^{2} & O \end{bmatrix} \xrightarrow{R^{1}} R^{3} \xrightarrow{R^{2}} R^{3} \xrightarrow{R^{2}} R^{3} R^{3} \xrightarrow{R^{2}} R^{3} R^{3} R^{3} R^{3} R^$$ Cobalt catalysis enables a new method for the generation of zinc enolates using diethylzinc to reduce α,β -unsaturated amides. This method has been applied to a high-yielding diastereoselective reductive aldol cyclization. | Method A: Co(acac) ₂ · 2H ₂ O (5 mol %) | |--| | Method B: CoCl ₂ (5 mol %), Cy ₂ PPh (5.5 mol %) | | entry | substrate | | method | product | | dr ^b | yield (%) ^c | |--------|----------------|----------------------------|--------|--|----|--------------------|------------------------| | 1 | Q Q | R = Me 1a | Α | → ↓ PMP | 2a | 12:1 | 89 | | 2 | | R = Me 1a | _d | Ph N N | 2a | 12:1 | 79 | | 3 | Ph N R | R = Et 1b | Α | RIIII
HO | 2b | 9:1 | 88 | | 4 | 0 0 | R = H 1c | Α | 0 | 2c | 9:1 | 88 | | 5 | | R = <i>i</i> -Pr 1d | Α | $R \longrightarrow N \longrightarrow Bn$ | 2d | >19:1 | >99 | | 6
7 | R Me | R = Ph 1e | Α | Merm | 2e | > 1 9:1 | 97 | | 7 | В́п | R = 2-furyl 1f | Α | НО | 2f | >1 9:1 | >99 | | | <u>0</u> 0 | | | | | | | | 8 | | R = Me 1g | Α | R N Bn | 2g | >19:1 | 94 | | 9 | R N Ph | R = <i>i</i> -Bu 1h | Α | Phim | 2h | >19:1 | 94 | | | | | | Hơ
O | | | | | 10 | ∬ çO₂Et | R = H 1i | В | → ↓ PMP | 2i | 9:1 ^e | 56 | | 11 | $R \nearrow N$ | R = Me 1j | В | RHONN | 2j | >19:1 ^e | 80 | | 12 | PMP | R = Ph 1k | В | CO ₂ Et | 2k | >19:1 ^e | 88 | | 13 | 0 | R = H 1I | ۸ | <u> </u> | 21 | 9:1 | 4 7 | | | , Å ∧ .Me | | A | R PMP | | | | | 14 | R N N | R = Ph 1m | A | × \ / / | 2m | 8:1 | 56 | | 15 | PMP Ö | R = OMP 1n | В | Me'''' | 2n | 14:1 | 74 | Org. Lett. 2006, 8(17), 3729. ### **Plausible Mechanism** $$R^{1}$$ R^{1} R^{2} R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{2} R^{3} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{3} R^{3} R^{2} R^{3} R^{3 R^1 R³" EtZnÕ 11 Or binding Et₂Zn along with Lewis basic interaction with cobalt hydride via 3c, 2e bridge $$E_{1}^{t}$$ E_{1}^{t} E_{2}^{t} E_{1}^{t} E_{1}^{t} E_{2}^{t} E_{3}^{t} E_{4}^{t} E_{2}^{t} E_{3}^{t} E_{4}^{t} E_{2}^{t} E_{3}^{t} E_{4}^{t} E_{4 Org. Lett. 2006, 8(17), 3729. ### **Title Paper: Nickel-Catalyzed Reductive Aldol Cyclization** $$R^{1}$$ $$R^{2}$$ $$R^{3}$$ $$R^{3}$$ $$R^{3}$$ $$R^{3}$$ $$R^{4}$$ $$R^{3}$$ $$R^{3}$$ $$R^{3}$$ $$R^{3}$$ $$R^{3}$$ $$R^{4}$$ $$R^{3}$$ $$R^{4}$$ $$R^{4}$$ $$R^{4}$$ $$R^{4}$$ $$R^{4}$$ | entry | substrate | | product | | dr ^b | yield (%) | |----------|--|---|-------------|----------|------------------|-----------| | 1 | | R = Me 3a | | 4a | >19:1 | 97 | | 2 | 0 0 | $R = i-Pr \ 3b$ | O
II | 4b | >19:1 | 98 | | 3 | | R = CH ₂ CH ₂ Ph 3c | , R N Bu | 4c | >19:1 | 95 | | 4 | R N Me
I
Bn | R = Ph 3d | Merry | 4d | >19:1 | 97 | | 5 | ы | R = 2-furyl 3e | но | 4e | >19:1 | >99 | | 6 | N Me | 3f (| N PMP
HO | 4f | >19:1 | 75 | | 7 | Ph N Et | 3g | Ph PMP HO | 4g | 9:1 | 82 | | 8 | Me N Ph | 3h | Et OMP | 4h | >19:1 | 62 | | 9 | 0 0 | R = Me 3i | o
II | 4i | 9:1 | 84 | | 10 | $R \longrightarrow N \longrightarrow Ph$ | R = <i>i</i> -Bu 3 j | R N Bn | 4j | 12:1 | 84 | | 11 | R N Ph | R = 2-furyl 3k | Phim | 4k | >19:1 | 79 | | 12
13 | R CO ₂ Et | R = Me 3I
R = Ph 3m | RHO PMP | 4l
4m | >19:1°
>19:1° | | #### **Title Paper: Scope of the Reaction** Me $$O$$ N Me Me Ni(acac)₂ (5 mol %) THF, hexane 0 °C to rt HO 13 >19:1 dr - simple acrylamides are less competent substrates but using Co(acac)₂ x 2H₂O gives 6 in 88% yield - substitution at the α -position enforces reductive cyclization vs. alkylaive aldol cyclization - the cyclizations of **8**, **10** and **12** using Co(acac)₂ were completely unsuccessful - tertiary zinc alkoxides produced in reductive cyclization undergo lactonization with the adjacent ester (unsuccessful with Co-catalyst) EtO₂C $$R^2$$ R^2 $R^$ ## Title Paper: Nickel-Catalyzed Reductive Aldol Cyclization Furnishing β -Hydroxylactones $$R^{1} \xrightarrow{O} Q \xrightarrow{O} R^{2} \xrightarrow{Et_{2}Zn (2 \text{ equiv}) \\ Ni(acac)_{2} (5 \text{ mol } \%)} R^{1} \xrightarrow{R^{2} \text{III.}} Q$$ $$Q = 20j \qquad Q = 20j \qquad Q = 21j$$ | entry | substrate | | product | | dr | yield (%)° | |--------|--------------|---|--------------------|-------------|--------------------|-----------------| | 1 | | R = /-Bu 20a | · · | 21a | >19:1 | 77 | | 2 | | R = CH ₂ CH ₂ Ph 20b | $_{R}$ | 21b | >19:1 | 85 | | 3 | R O Me | R = 4-MeOPh 20c | Merm | 21c | >19:1 | 76 | | 4 | | R = 2-furyl 20d | но | 21d | >19:1 | 81 | | 5 | | R = <i>i</i> -Bu 20 e | o
II | 21e | 5.5:1 | 84 ^d | | 6 | | R = CH ₂ CH ₂ Ph 20f | 1 1 | 21f | ≥10:1 | 76° | | 7 R' V | R' O' Ph | R = 2-furyl 20g | HO | 21g | n.d ^f | 75 ^f | | 8 | O
∐ ÇO₂Et | R = Me 20h | | 21h | >19:1 ⁹ | 88 | | 9 | ROO | R = i-Pr 20i | R HO TO | 2 1i | >19:1 ⁹ | 74 | | 10 | | R = Ph 20 j | CO ₂ Et | 21j | >19:1 ⁹ | 73 | #### **Title Paper: Mechanistic Considerations** Mechanism B Part of the property prope - The nickel-catalyzed reductive cyclization of 53 gave a 1:1.3 inseparable mixtures of 56a and 56b (diastereomeric products) - Mecanisms **A** and **B** are appreciably more complex - The alkene of the α , β -unsaturated carbonyl can undergo E/Z equilibration and the diastereoselectivity could result from mechanism **A** #### **Title Paper: Stereochemical Outcome** Ph. $$Bn$$ Et $Ni(acac)_2$ Et Et $Ni(acac)_2$ Et Et $Ni(acac)_2$ Et - Subjecting the *Z*-**60** to the standard reaction conditions (with 0.5 equiv of Et₂Zn) gives the lactam **61** along with the uncycled material (*which had undergone complete E/Z isomerisation*) - Mechanism A cannot be excluded #### **Conclusions** - Ni(acac)₂ in the presence of diethylzinc is a highly effective catalyst for the reductive aldol cyclization of substrates containing α , β -unsaturated carbonyl functions thetered to the ketone - Tether can be either an amide or an ester (opposite to Co(acac)₂ which is not efficient with esters) - The role of diethylzinc is to deliver a hydride to the β -position of the cyclization precursor - The reaction is tolerant to substituents at the β -position of the α , β -unsaturated carbonyl component as well as to different nitrogen protected groups - Two possible mechanisms were suggested and several mechanistic probes revealed the complex nature of these reactions